The sum-of-digits function of polynomial sequences

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The sum-of-digits function of polynomial sequences

Let q ≥ 2 be an integer and sq(n) denote the sum of the digits in base q of the positive integer n. The goal of this work is to study a problem of Gelfond concerning the repartition of the sequence (sq(P (n)))n∈N in arithmetic progressions when P ∈ Z[X] is such that P (N) ⊂ N. We answer Gelfond’s question and we show the uniform distribution modulo 1 of the sequence (αsq(P (n)))n∈N for α ∈ R \Q...

متن کامل

The Sum of Digits Function of Squares

We consider the set of squares n2, n < 2k, and split up the sum of binary digits s(n2) into two parts s[<k](n 2) + s[≥k](n 2), where s[<k](n 2) = s(n2 mod 2k) collects the first k digits and s[≥k](n 2) = s(bn2/2kc) collects the remaining digits. We present very precise results on the distribution on s[<k](n 2) and s[≥k](n 2). For example, we provide asymptotic formulas for the numbers #{n < 2k ...

متن کامل

extensions of some polynomial inequalities to the polar derivative

توسیع تعدادی از نامساوی های چند جمله ای در مشتق قطبی

15 صفحه اول

On the Sum of Digits of Some Sequences of Integers

Let b ≥ 2 be a fixed positive integer. We show for a wide variety of sequences {an}n=1 that for most n the sum of the digits of an in base b is at least cb log n, where cb is a constant depending on b and on the sequence. Our approach covers several integer sequences arising from number theory and combinatorics.

متن کامل

The Distribution of the Sum-of-digits Function

By using a generating function approach it is shown that the sum-of-digits function (related to speciic nite and innnite linear recurrences) satisses a central limit theorem. Additionally a local limit theorem is derived.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of the London Mathematical Society

سال: 2011

ISSN: 0024-6107

DOI: 10.1112/jlms/jdr003